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Vector lattice model for stresses in granular materials
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A vector lattice model for stresses in granular materials is proposed. A two-dimensional pile built by pouring
from a point is constructed numerically according to this model. Remarkably, the pile violates the Mohr
Coulomb stability criterion for granular matter, probably because of the inherent anisotropy of such poured
piles. The numerical results are also compared to the earlier continuum fixed principal axes model and the
~scalar! lattice q-model.
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Understanding how granular materials sustain extern
applied loads is an interesting and difficult scientific pro
lem, with obvious engineering implications. Unlike for ela
tic materials, the slippages that occur when a granular hea
built make it impossible to define a displacement~and thence
a strain! field. One thus has to solve for a tensor stress fi
~which cannot be expressed in terms of a vector displa
ment field! using the vector force balance equation. In tw
dimensions, where the stress tensor has three indepen
components, this results in one ‘‘missing’’ equation. In thr
dimensions, the situation is even worse.

One of the main tools used to deal with this difficulty
the Mohr Coulomb~MC! stability criterion. This states tha
the ratio of the shear to the normal stress at any point in
a cohesionless granular heap, with any orientation of a
cannot exceed the coefficient of frictionm. This is natural,
since otherwise one would expect an appropriately loca
~and oriented! slip plane to spontaneously destabilize t
heap. Using the MC inequality and symmetry~or further
assumptions!, it is sometimes possible to obtain useful r
sults on the stability of granular heaps@1#. For instance, the
elastoplastic model@2# of granular stresses relies crucially o
this criterion. The fixed principal axes~FPA! model @3,4#
does not invoke the MC criterion, but obtains it as a bypro
uct.

Both the elastoplastic and the FPA theory yield the s
prising result that the MC criterion is saturated in a lar
outer region of a two-dimensional pile built by pouring fro
a point. This implies@5# that an infinitesimal perturbation
inside the outer region should destabilize the pile, while o
would expect that a poured pile should only be unstable
the surface.

A byproduct of the MC criterion is that the angle of r
posef should satisfy the equation

tanf5m. ~1!

In two dimensions, the MC criterion becomes

~sxx2syy!
214sxy

2

~sxx1syy!
2 <sin2f. ~2!

Although the MC criterion seems reasonable, there is
implicit assumption~in the orientation-independentm) that
the granular medium is isotropic. This is a questionable
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sumption for a granular heap built by pouring from a poi
As the grains roll down the slopes of the heap, anisotro
can be ‘‘frozen in,’’ with different behavior parallel and pe
pendicular to the slope. In fact, for a two-dimensional he
of identical disks in a perfect triangular lattice@6#, the left-
hand side of Eq.~2! goes to unity at the corner of an infi
nitely high heap, whilef5p/3. The motivation for this pa-
per is to investigate whether this anisotropy persists aw
from the special case of the perfect lattice.

In this Rapid Communication, we consider a tw
dimensional lattice model, with the grains placed on a tria
gular lattice~see Fig. 1!. Each grain rests on its two neigh
bors in the row below, and supports its neighbors in the r
above. Adjoining sites in the same horizontal row are n
connected. Forces propagate downwards from each gra
its descendants. In addition to the force from its predec
sors, a grain also transmits its own weight downwards. T
weight is taken to be the same for every grain.

In order to include disorder in the model, the outgoi
bond anglesu1 andu2 from a site are chosen randomly. Fo
N lattice sites, there are 2N random angles, each of which i
chosen independently from a uniform distribution over t
interval @umin ,umax#. The width of this interval is a measur
of the degree of disorder. With equal sized grains, even if
lattice is viewed as a topological rather than a geometr
structure, the bond angles would not be all independent,
such correlations are ignored for simplicity.

Vector force balance is enforced on every lattice s
Solving for the intergrain force network, proceeding dow
wards from row to row, inevitably leads to occasional neg
tive ~i.e., attractive! intergrain forces. This is unphysical for

FIG. 1. ~a! Triangular lattice. Each site rests on its two neig
bors below, and receives forces from its neighbors above.~b! The
incoming force is too horizontal, and the site is unstable. The do
wards bond going left is broken, and a horizontal bond is est
lished. The anglesu1 and u2 are independent random variables
each site.
©2000 The American Physical Society01-1
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cohesionless granular medium. Accordingly, if the force
tween a grain and one of its descendants is negative,
interpret this to mean that the grain is unstable, and rolls
the direction of the other descendant. Within the model,
is accommodated by breaking the bond with negative fo
and establishing a new bond with the adjacent site~in the
same row as the unstable grain! in the opposite direction~see
Fig. 1!. The new bond established necessitates recompu
force balance for the sites in the row; several iterations
be required before a stable configuration is achieved.

In reality, a moved grain would also change the angles
its unbroken bonds. Moreover, since the pile is not reall
regular lattice, the link established to the adjacent site wo
not be horizontal. Both of these issues are ignored. The
of unstable grains readjusting contacts was suggested e
@7#, but the implementation of this process and the spec
system studied are different here.

The model described above is similar to the ear
q-model@8,9# with one key difference: theq-model hassca-
lar forces, only keeping track of the vertical force on ea
grain. Even with this limitation, theq-model successfully
accounts for the experimental result@8,10,11# that the verti-
cal forces on individual grains at the bottom of a granu
heap have a distributionP( f ) that decays exponentially fo
largef. It also agrees with the experimental observation@11#
that the vertical forcesf i and f j on two grains at the bottom
of a heap satisfŷ f i f j&5^ f i&^ f j&. However, the absence o
vector forces in theq-model prevents it from reproducing th
visually most striking feature of granular forces: the ex
tence of ‘‘force chains’’@12,8#, a sparse network of grain
that experience large stresses. Further, while forces o
single grain level are important for the failure of granu
materials, one is often interested in a more coarse gra
continuum description. There has been earlier work on v
torizing the q-model indirectly @13#, and directly with a
method different from the one here@14#. We shall see tha
the vector lattice model proposed in this paper agrees
with the same experimental results as theq-model, and in
addition yields force chains, corroborates some aspects o
FPA model while disagreeing with others, and permits a
of the MC stability criterion.

The specific system we consider is a granular pile built
pouring from a point. This is the system on which most
the FPA model analysis has concentrated; also, we have
sons to question the validity of the MC criterion in such
system. For convenience, in the numerical simulations,
pile is built from the top down instead of from the bottom u
~No significant difference is found with a bottom up co
struction.! Thus, one starts with one lattice site in the top ro
and computes the outgoing forces, proceeding to two site
the next row and so on. If a row hasm sites, the next row has
m11 sitesunlessthe sites at the edge require adjacent s
to establish horizontal bonds with. All the numerics in th
paper are with bond angles ranging over@p/6,p/3#, unless
specified otherwise.

Figure 2 shows the result of such a simulation, with 4
rows. There is a well defined slope to the pile. We view
centralm sites in themth row as theinterior of the pile, and
the sites that flank this inner region asbuttresses, necessary
01030
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to stabilize the pile. This division into an inner and out
region is in accordance with the FPA model. With the hi
stress bonds marked, one sees force chains concentrat
the inner region of the pile, in accordance with experime
@15#. The force chains seem perfectly straight because
sites are on a regular lattice; with a more realistic mod
where the random bond angles would be accompanied b
irregular lattice, the chains should meander, with a me
orientation of^u&.

If the horizontal and vertical forces across the bottom
the pile ~averaged over many runs! are plotted, the vertica
force f y has a flat peak in the inner region and falls o
steeply in the outer region. The variation inf y across the
inner region is less than65%. The horizontal forcef x var-
ies linearly across the inner region, peaks roughly at
boundary between the inner and outer regions, and falls
in the outer region. The linear profile forf x shows that the
pile has a strong tendency tosplay.

One can coarse grain and compute ‘‘continuum’’ stress
Fig. 3 shows the components of the stress tensor, calcul
by coarse graining over 20 lattice sites at the bottom of a
of 8000 rows, and then averaging over 2000 runs. Not s
prisingly, the division between the inner and outer regio
seen in the force componentsf x and f y is also seen here. Fo
piles more than 200 rows high~smaller piles have not bee
checked!, stresses and forces scale linearly with the p
height.

The slight curvature seen insyy in the central region is
accentuated in the plot ofsxx /syy . The steady increase in
this stress ratio as one moves away from the symmetry
violates the hypothesis of Ref.@3#, thatsyy}sxx ; this cannot
be cured by using the more general FPA or oriented st
linearity ~OSL! hypotheses@4# of sxx5k1syy1k2usxyu,
sincesxx /syy is quadratic at the center of the pile, where
usxyu has a linear kink. More importantly, the violation of th
FPA hypothesis can be understoodphysically. At least in the
inner region, the splay in the pile makes it increasingly like
for sites to be destabilized outwards as one moves away f

FIG. 2. A pile 400 rows high. The outer lines are the boundar
of the pile, and show that it has a well defined slope. In any ro
bonds with a force greater than four times the average bond forcin
that row are marked, and show directed force chains. The t
straight lines are the boundaries of the inner region of the pile.
force chains are concentrated in the inner region.~If the threshold
were less than 4, there would be more chains in the outer regi!
1-2
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the axis of symmetry. Such destabilized sites establish bo
with their adjacent sites. Thus, while the forces emerg
from a site in the central region propagate downwards to
descendants, there is a steady drift towards more horizo
force propagation as one moves outwards. This reorients
principal axes of the stress tensor and increasessxx /syy .
Changing the range of bond angles,@umin ,umax# has no quali-
tative effect on the results discussed so far: the size of
buttresses flanking the inner region naturally increases w
the bond angle range is increased.

The approximately flat profile of the vertical force in th
inner region allows us to compute the distribution of vertic
forces in this region. Figure 3 was obtained by averag
over many runs and lattice sites, but the forces on a sin
site in a single run have large fluctuations. Figure 4 show
semilog plot of the probabilityP( f ) for a grain in~the inner
region of! the bottom row to experience a forcef. Although
there is a slight deviation from an exponential for largef, this
steadily decreases as the size of the pile is increased,
gesting an exponential tail toP( f ) for infinite system size. If
the range of bond angles is reduced, the evolution toward
exponential tail for P( f ) with increasing system size i
slower, but is manifest. Conversely, the inset to Fig. 4 is
a bond angle range of@0.01p/3,1.49p/3#. Even though the
pile is only 400 rows high,P( f ) clearly has an exponentia
tail.

The small f behavior ofP( f ) depends on the range o

FIG. 3. ~a! Components of the stress tensor across the bottom
the pile. The pile is 8000 rows high, so the boundary of the in
region is atx564000. (x is in units of grain number, and the stre
is in units of grain weight per lattice spacing.! ~b! The ratiosxx /syy

from the same data, showing thatsyy is not proportional tosxx .
sxx cannot be expressed even as a linear combination ofsyy and
usxyu.
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bond angles. However, in all cases one sees thatP( f→0)
Þ0. This is in accordance with experiments@11#, but not
with the q-model. In the model in this paper, if a lattice si
receives a large force from above, it transmits large force
both its descendants. Since it is unlikely that either of
descendants gets a large force from its other ancestor,both
descendants are usually destabilized outwards. The com
descendant of the two destabilized grains thus receives
force. This yields ad-function in P( f ) at f 50 ~actually, at
the weight of a single grain!, leading toP( f→0)Þ0. Thus,
the vector lattice model agrees with experiments in this
spect because it hasarching: weight applied at a point can
propagate down outwards, completely avoiding the region
rectly below it. This is important in granular materials but
absent in theq-model.

of
r

FIG. 4. Semilog plot ofP( f ) vs f from the inner region of piles
of varying heights;f is in arbitrary units and scaled with syste
size. The asymptote is roughly straight, and grows straighter w
increasing system size. The inset~axis label on right! shows a simi-
lar plot with bond angles almost spanning@0,p/2#.

FIG. 5. Mohr Coulomb ratio across the bottom of the pile. T
dashed line is sin2a, wherea is the angle of repose. The curv
clearly goes above the line, showing that Eq.~2! is violated.~Where
the curve crosses the line, relative to the boundary between
inner and outer regions, depends onumin,max.) The pile height and
units for x are as in Fig. 3.
1-3
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One can also compute the correlation between vert
forces on sites~in the inner region of the pile! in the same
row. Unlike theq-model this is not exactly zero, and depen
on @umin ,umax#, but is typically a few percent of the varianc
in f. This is consistent with the experimental observation@11#
that vertical forces are uncorrelated.

Finally, Fig. 5 shows the MC ratio, the left-hand side
Eq. ~2!, obtained from the coarse grained stresses of Fig
The dashed line shown is at a height of sin2a, wherea is the
angle of repose~for a pile constructed as above, by pourin
from a point!. It is slightly tricky to define the angle of re
pose when a regular lattice is combined with random bo
angles. If the width of the pile at a depth ofm rows from the
top is w(m), and the largem limit of m/w(m) is l, since
the average bond angle isp/4, a is taken to be tan21l.
The curve goes above the straight line, violating the M
criterion.
i-
2
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In this paper, we have proposed and analyzed a t
dimensional lattice model with vector forces for granu
materials. On an individual grain level, the model yiel
force chains, arching, and is consistent with an exponen
tail to the distribution of vertical forces. Continuum stress
show an inner and outer region for a pile poured from
point, but the principal axes of the stress tensor are not fix
Most importantly, the model violates the Mohr Coulomb c
terion, calling in question its validity for poured granula
heaps. It is not obvious how to extend this model to inclu
inter-grain friction; off-lattice simulations using contact d
namics ~with the heap in a container and prepared diffe
ently! have been done@16#.

I thank Sid Nagel, Deepak Dhar, and Narayanan Men
for useful discussions.
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